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ABSTRACT Global Coconut (Cocos nucifera (L.)) cultivation faces significant challenges, including yield
loss, due to pest and disease outbreaks. In particular, Weligama Coconut Leaf Wilt Disease (WCWLD)
and Coconut Caterpillar Infestation (CCI) damage coconut trees, causing severe coconut production loss
in Sri Lanka and nearby coconut-producing countries. Currently, both WCWLD and CCI are detected
through on-field human observations, a process that is not only time-consuming but also limits the early
detection of infections. This paper presents a study conducted in Sri Lanka, demonstrating the effectiveness
of employing transfer learning-based Convolutional Neural Network (CNN) and Mask Region-based-CNN
(Mask R-CNN) to identify WCWLD and CCI at their early stages and to assess disease progression. Further,
this paper presents the use of the You Only Look Once (YOLO) object detection model to count the number
of caterpillars distributed on leaves with CCI. The introduced methods were tested and validated using
datasets collected from Matara, Puttalam, and Makandura, Sri Lanka. The results show that the proposed
methods identify WCWLD and CCI with an accuracy of 90% and 95%, respectively. In addition, the
proposed WCWLD disease severity identification method classifies the severity with an accuracy of 97%.
Furthermore, the accuracies of the object detection models for calculating the number of caterpillars in the
leaflets were: YOLOv5-96.87%, YOLOv8-96.1%, and YOLO11-95.9%.

INDEX TERMS Coconut, Pest control, Transfer Learning, Deep Learning, Image Processing, Mask R-
CNN, YOLOv5, YOLOv8, YOLO11

I. INTRODUCTION

The Cocos nucifera (L.) (commonly known as coconut) tree
is a member of the palm family, which has a 50-60-year
economic lifespan and starts bearing fruits within 5-6 years
after being planted. Usually, the tree grows up to 30 m with
a crown of 30-40 leaves, making an ample amount of food
and shelter for the survival and reproduction of many insects
and pests [1]. Pests and diseases in coconut plants cause
fatal damage to the palm and can result in outbreaks, causing
heavy economic losses [1]. Therefore, efficient disease and

pest-controlling methods are vital for coconut cultivation [2].
Recent studies [3]–[8] discuss that Weligama Coconut

Leaf Wilt Disease (WCLWD) and Coconut Caterpillar In-
festation (CCI) pose the greatest threats to coconut plan-
tations in Sri Lanka and regional countries, causing rapid
and severe damage to the coconut cultivation. According to
[4]–[6], WCLWD, which is an incurable disease, has been
detected to be spreading at an alarming rate in Sri Lanka
due to lack of early detection capabilities. During the expert
survey, it was confirmed by principal entomologists from
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the Coconut Research Institute of Sri Lanka (CRISL) [9]
WCLWD symptoms, specifically uneven yellowing [3], [10],
[11], are frequently misclassified as the yellowing caused by
Magnesium (Mg) deficiency [10], [11], making it difficult for
even trained individuals to differentiate the two [3]. Similarly,
the dried appearance of leaves caused by CCI is also difficult
to distinguish from Leaf Scorch Decline (LSD) [3], which is
a physiological disorder. For these reasons, the majority of
coconut growers are incapable of identifying the WCLWD
and CCI infestations at their early stages.

The principal entomologists also confirmed that both
WCLD and CCI are detected using on-field human obser-
vations, which is not only time-consuming but also lim-
its the early detection of infections. ICT tools have been
successfully incorporated into developing pest and disease
management practices in the recent past to early identifi-
cation and treatments [12], [13]. Also, recent literature has
shown that Machine Learning (ML) and artificial intelligence
(AI) are thriving in agricultural research studies, significantly
improving precision farming through automated analysis and
decision-making [14], [15]. Among these advancements, the
use of computer vision and deep learning (DL) techniques,
such as feature extraction to automate pest and disease
classification, is gaining momentum as a valuable tool to
modernize conventional observation methods [1], [2], [16]–
[20]. Consequently, as an extension of the preliminary study
[13], this paper presents a study on the effectiveness of using
DL techniques for the early identification of CCI, automating
the detection of caterpillars, and the early identification of
WCLWD.

II. BACKGROUND SURVEY
This section explores the application of DL and Machine
Learning (ML) in agriculture, focusing on disease and pest
management. The section covers the use of DL models,
CNNs, instance segmentation, and object detection tech-
niques in identifying and classifying plant diseases, nutrient
deficiencies, and pests. The review also highlights specific
studies and their findings in these areas, emphasizing the po-
tential and current limitations in the field. A comprehensive
summary is presented in Table 1.

Several studies have explored the use of DL techniques
for disease identification and management. For instance,
Sladojevic et al. [21] and Han et al. [17] have highlighted
the success of CNN-based models in classifying healthy and
diseased leaves, as well as detecting nutrient deficiencies in
black gram. The work of Francl et al. [19], further under-
scores the application of Artificial Neural Network (ANN) in
predicting disease appearances and identifying specific plant
diseases with high precision and recall rates. Additionally,
studies by Miriyagalla et al. [32], Wijekoon et al. [22], Hahn
et al. [20], and Huang [23] have contributed to the develop-
ment of platforms for predicting disease spread and detecting
specific plant diseases using advanced technologies like near-
infrared spectroscopy and deep neural networks. Even though
such studies justify that the use of DL technologies together

with image processing is very effective, none of those studies
focused on the coconut industry, making it a niche sector to
apply such advanced techniques for the early identification of
diseases.

Instance segmentation and object detection technologies
have also become prominent tools for pest and disease de-
tection in plants. Wang et al. [24] detailed the utilization of
Faster R-CNN and Mask R-CNN to identify and segment
plant diseases accurately. Geetha et al. [25] advanced this
field by addressing the challenges of detecting small pests
in natural environments and classifying them into multiple
categories. Their methodologies have significantly enhanced
the accuracy and efficiency of in-field pest detection sys-
tems, which are crucial for sustainable crop management.
Manoharan et al. [26] employed Mask R-CNN to calculate
the extent of nutritional deficiencies (Nitrogen, Phosphorous,
and Potassium) in crops like Guava, Groundnut, and Citrus
by assessing the degree of leaf unhealthiness through masked
images. Hewawitharana et al. [27] addressed the persistent
threat of Blister Blight (BB) in the Ceylon tea industry
and provided classification and severity assessment using
CNNs and Mask R-CNN. Additionally, Tiwari et al. in [28]
reported the detection of Fall Armyworm (FAW) insects in
field crops using Mask R-CNN, leading to the creation of
bounding boxes and segmentation frames for each insect in
the image. Unfortunately, none of these studies were focused
on coconuts.

The automation of pest management has also been a focus
in recent literature, as evidenced by the work of Lins et al.
[16], who developed software for automated counting and
classifying aphids. This method addresses the inefficiencies
and errors associated with manual counting. However, there
remains a gap in the automation of counting coconut caterpil-
lars, as they still resort to manual counts in current practices.

It was identified that there is limited literature specifi-
cally focused on coconut diseases and pest. Among them,
Chandy’s study [2] proposed a DL-based system identifying
coconut pest infestations, but it did not extend to disease
classification. However, several studies have employed DL
techniques for classifying diseases in coconut trees. Maray et
al. [29] introduced the AIE-CTDDC model for disease detec-
tion, but not for severity assessment. Kadethankar et al. [30]
presented an end-to-end pipeline for detecting rhinoceros
beetle infestations in coconut trees using drone imagery.
Their approach focused on detecting and extracting indi-
vidual tree crowns from drone images, enabling targeted
analysis. Singh et al. [31] conducted disease classification
using CNN, but they identified severity assessment and DL
segmentation methods as future research direction. These are
also two main objectives of the present study.

As summarized in Table 1, there is a clear need for further
research to leverage advanced AI techniques for improved
pest and disease management in coconut cultivation because
as stated perviously, research on coconut pest and disease
management is relatively limited, with most studies focusing
on disease classification rather than severity assessment or
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TABLE 1: Summary of significant ML and DL applications in agriculture

Ref Crop Objectives Methods Respective Accuracy’s Year
[21] Pear, Cherry etc... Disease classification CNN-based models 96.3% 2016
[17] Black Gram Nutrient deficiency classification Transfer learning-based CNN 65.44% 2019
[19] Wheat Disease propagation prediction ANN, Logistic Models 93% & 90% 1997
[22] Tomato, Beans etc... Disease detection & dispersion CNN, Mask R-CNN, Gaussian Plume 90% - 94% 2022
[20] Tomato Disease detection Near-infrared spectroscopy 78% 2004
[23] Moth Orchids Disease detection Gray level co-occurrence matrix 89.6% 2007
[24] Tomato Disease detection Faster R-CNN, Mask R-CNN 88.53% & 99.64% 2021
[25] Cabbage Pest Detection CNN, Mask R-CNN 95.3% & 98.3% 2024
[26] Guava, Citrus etc... Nutrition deficiency classification CNN-based model 88% 2020
[27] Tea Disease severity assessment CNN, YOLOv8, Mask R-CNN 89.9%, 98% & 89% 2023
[28] Maize Pest Detection Mask RCNN 94.21% 2023
[16] Wheat, Maize etc... Pest classification & counting OpenCV, ANN 97.9% & 92.5% 2020
[2] Coconut Pest and disease identification DNN Only Proposed 2019
[29] Coconut Disease Classification Gated Recurrent Unit 97.75% 2022
[30] Coconut Infestation Classification CNN, Faster R-CNN 84.64% & 97.30% 2021
[31] Coconut Disease Classification CNN 96.94% 2021

advanced detection techniques.
Therefore, this study was conducted with three main ob-

jectives:
1) Analyze the effectiveness of using DL techniques to

identify and classify WCLWD and CCI at their early
stages

2) Calculate the degree of diseased conditions of
WCLWD using transfer learning-based CNN

3) Measure the progression of CCI using advanced deep
learning segmentation techniques such as Mask R-
CNN and You Only Look Once (YOLO) object detec-
tion models, helping farmers determine the necessary
precautionary management actions.

The experiments were conducted in hot spot areas in the
Matara and Puttalam districts of Sri Lanka, and the datasets
were collected from different locations and times to reduce
class imbalances; the dataset is published in [33].

III. MATERIALS AND METHODS
A. DATA COLLECTION
To develop the ML models for early detection and classifica-
tion of CCI and WCLWD, we first collected images across a
range of conditions, including the following:

‚ Healthy and disease-infected trees of different dis-
eases, including flattened leaflets, uneven yellowing, tip
browning, CCI, and WCLWD.

‚ Tree fonds of different sizes and growth.
‚ Different locations in the country.
‚ Different stages of the growth of both diseases.
‚ Different times of the day(morning and evening).
‚ Diverse weather conditions.
‚ Different image qualities and resolutions.
It should be noted that the two conditions below were

applied to collect data from disease-infected leaves, as we
were informed by field experts from the CRISL.

‚ For WCLWD-infected leaves, images were collected
from the upper leaf surface.

‚ For CCI-infected leaves, leaflet images were acquired
from the lower surface.

Images were captured using mobile phones and Digital Sin-
gle Lens Reflect (DSLR) cameras. To cover a wider range of
sensor and image qualities, iPhone6 with 8MP camera [34],
iPhone11 with 12MP camera [35], and a high-quality Canon
ESO 3000D DSLR with 18MP camera with a larger APS-
C sensor [36] were used for data collection. Note that auto
settings with auto-post processed JPEG output formatting
were used in both scenarios. These conditions were aimed
at aligning the data collection process with the traditional,
manual assessments of diseases that have been practised
within the CRISL [4].

The acquisition of leaf samples was carried out in collabo-
ration with research personnel affiliated with the CRISL [9],
within the time frame of April to May 2021. The sample
images were classified and verified by skilled personnel from
the CRISL, and this was considered the ground truth for this
study. This approach was undertaken to mitigate potential
similarities between image samples, thus ensuring a no class
imbalance in the dataset.

A summary of the acquired dataset is given in Table 2.
The WCLWD dataset employed for disease classification
comprised a total of 9,258 images, while 3,307 images
were used to evaluate symptom severity. The CCI infestation
classification task was performed using a dataset consisting
of 1,600 images, while the ML model for quantifying the
number of caterpillars on a leaf was trained using 1,400
images. As one of the contributions of this study, we made
the curated dataset available for researchers in this domain
via Kaggle [33].

The coconut fronds infected by WCLWD were sourced
from the city of Matara, Sri Lanka, an area known for
disease prevalence. Matara is located within the low country
wet agro-ecological zone of the southern province of Sri
Lanka (latitude 6°-10° and longitude 79°-82°). According to
research [37], WCLWD is isolated to these areas, appearing
in pockets or clusters. Extensive containment measures, such
as the removal and burning of infected palms, have been
implemented. Hence, this area was selected for data collec-
tion, with the few remaining affected areas kept under strict
observation and made accessible only for research purposes,
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TABLE 2: Summary of Data Samples

Condition Location Purpose Training Validation Testing (collected separately)

WCLWD Weligama, Matara
Disease Classification 7406 1852 117

Symptom Severity 2645 662 106

CCI Puttalam, Lunuwila
Infestation Classification 1280 320 100

Caterpillar Calculation 1120 280 140

allowing data to be gathered under carefully controlled condi-
tions. Fronds exhibiting symptoms such as flattened leaflets,
uneven yellowing, and tip browning were selected for image
collection, as they are the initial symptoms of WCLWD [3].

For CCI, experimental images were obtained from mul-
tiple estates in Lunuwila and Makandura, Sri Lanka. Both
these estates are situated within the low-country dry zone of
the Puttalam district, a part of the area known for significant
coconut cultivation, commonly referred to as the Coconut
Triangle [38] 1. Caterpillar damage is prevalent within the
Coconut Triangle, thus this area was considered for data
collection. We were careful to select leaflets displaying dried
brown patches with caterpillar galleries for the dataset.

B. DATA PREPROCESSING
The collected raw data underwent a series of preprocess-
ing steps to enhance accuracy and to reduce calculation
complexity. Image sizes ranging from 150 × 150 to 750
× 750 dimensions were collected during the field visit. To
provide consistent input dimensions for neural networks, all
images were resized to a uniform size of 300 × 300 pixels.
Further, the pixel values of the images were normalized by
dividing them by 255, scaling them to a range between 0 and
1. Subsequently, data augmentation techniques of rotation,
filling, shearing (both horizontally and vertically), flipping
(both horizontally and vertically), and zooming were applied
to expand the sample size and mitigate the potential of model
overfitting. The deep learning models were trained using pre-
processed coconut leaflet images, with the dataset split into
an 80% training set and a 20% validation set. The test data
were then collected separately to avoid manual pre-selection
and biasness during field visits.

C. DATA ANNOTATION
Initially, all preprocessed and augmented images were man-
ually annotated by skilled professionals at CRISL. VGG
Image Annotator (version 2.0.11) [39] was utilized by the
CRISL experts to leverage their specialized domain knowl-
edge for accurately identifying and labelling disease symp-
toms. This tool was selected owing to the effectiveness and
the accuracy presented in agricultural research [40], [41].
The polygon annotation labelling technique was then used to
mark the area of the leaflets. During the process, leaf images
with and without infestation damage were labelled, and the

1This geographical triangle includes Puttalam, Kurunegala, and Gampaha
districts, which have excellent climatic conditions for coconut palms.

remaining region was set to the background, and the output
file contains the coordinates for the polygonal regions. To
train the model, these defined regions were fed into the Mask
R-CNN model as input neurons.

It is important to note that the images used to train the
YOLOv5 [42], YOLOv8 [43] and YOLO11 [44] models
were annotated using MakeSense.ai [45], an open-source
tool widely adopted in several similar studies, such as [46]
and [47], for creating precise annotations in the field of
plant disease detection. The labeling technique employed
was box annotation. MakeSense.ai also generates a single
JSON file containing the coordinates of the annotated box
regions and associated metadata. These defined regions were
subsequently used as input data for the YOLO models during
training.

D. CLASSIFY WCLWD AND ASSESS SEVERITY LEVEL
WCWLD can be distinguished using four key symptoms as
listed below:

1) Flaccidity 2

2) Uneven yellowing
3) Leaf tip browning
4) Breaking off the leaf tips
The fourth symptom, breaking off the leaf tips, is distin-

guishable, and at this stage, there is no value in the coconut
tree. Therefore, as one of the main scientific contributions
of this study is to detect the disease at an early stage, the first
three symptoms, which are common in the early phases, were
chosen as the most important [3]. The symptoms of WCWLD
are shown in Fig. 1.

In this study, WCWLD was initially classified, and then
disease severity was identified based on the progression of
symptoms. The disease classification was performed using
the flaccidity of the leaves, as it is the first symptom to appear,
as shown in Fig. 1. This binary classification distinguished
between healthy leaves and those exhibiting flaccidity. After
classifying the disease based on flaccidity, disease severity
was assessed using the remaining two symptoms: uneven
yellowing and tip browning, which appear a few weeks later
as the disease advances. To assess severity, a multi-class
classification model with three classes—flaccidity, uneven
yellowing, and tip browning—was trained. This strategy led
us to identify and classify the disease at its early stages.

We trained ResNet50, DenseNet121, ResNet50V2, Incep-
tionResNetV2, InceptionV3, MobileNetV2, Xception, and

2Flaccidity is the initial symptom that aids in detecting infected palms
during the early stages.
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(a) Flaccidity (b) Uneven yellowing

(c) Drying of the leaflets (d) Breaking off the leaf tips

FIGURE 1: Symptoms of WCLWD. Images include (a) Flaccidity, (b) Uneven yellowing, (c) Drying of the leaflets, and (d)
Breaking off the leaf tips.

VGG16 pre-trained CNN models in this study using the
sample data provided in Table 2. These architectures were
compared to determine the best fit for classifying the disease
and its severity. The models were trained to predict the output
of the CNN with binary classification to identify flaccidity
and classify the disease.

Similarly, a multi-class classification model featuring three
classes was trained to evaluate the severity of symptoms.
CNNs are highly effective in image classification due to their
ability to learn hierarchical features from images through a
series of convolutional and pooling operations. The convolu-
tion operation involves applying a filter to the input image
to extract important features like edges and textures. This
operation can be expressed using (1).

pI ˚ hqpx, yq “

k
ÿ

i“´k

k
ÿ

j“´k

Ipx ` i, y ` jq ¨ hpi, jq (1)

where I represents the input image matrix, with Ipx, yq

denoting the pixel value at coordinates px, yq, and h is the
filter or kernel matrix applied to detect features within the
image. The indices i and j represent the coordinates within
the filter, ranging from ´k to k, where k defines the filter size.
The notation

řk
i“´k

řk
j“´k signifies the summation over all

values in the filter region, allowing the weighted sum of pixel
values centered at each px, yq location.

After the convolution operation, the Rectified Linear Unit
(ReLU) activation function is applied. The ReLU function is

defined using (2)

fpxq “ maxp0, xq (2)

where fpxq represents the ReLU activation function,
which outputs the maximum of 0 and function’s input vari-
able x.This ensures that all negative values in the feature
maps are set to zero, retaining only the positive activations,
which helps the network capture complex patterns relevant to
disease detection. To further reduce the dimensionality of the
feature maps, we applied max pooling (3), which selects the
maximum value from a defined window.

P “ maxtxi,ju for i, j P window size (3)

where P denotes the output of the max pooling operation,
which selects the maximum value xi,j within a specified win-
dow size. The indices i and j represent the coordinates within
this window. Max pooling reduces the spatial dimensions
of the input while retaining the most prominent features,
thereby enhancing computational efficiency and controlling
overfitting in deep learning models. In the final stages of the
network, a fully connected layer combines the features ex-
tracted from the convolutional layers to form a classification
decision. The fully connected layer (dense layer) computes
the output using (4)

z “ WTx ` b (4)
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where z represents the output of a dense layer. In this
equation, W is the weight matrix, x is the input vector, and b
is the bias vector.

To optimize the performance of the CNN models, the
Adam and Stochastic Gradient Descent (SGD) optimiza-
tion algorithms were applied through hyperparameter tuning.
This allowed the network to iteratively minimize the loss
function, improving the accuracy of the disease classification.
The symptoms in each image were analyzed to determine the
stage of the disease. If all three symptoms—flaccidity, un-
even yellowing, and tip browning—were present, it indicated
that the disease had progressed to a severe stage. However,
if only flaccidity was observed, it suggested that the disease
was still in its early stages. This approach helped assess the
severity and progression of the disease based on the visible
symptoms in the images.

E. IDENTIFY AND CLASSIFY CCI
Figure 2 illustrates the proposed Mask R-CNN method, to
detect CCI-infected areas and filter out those regions to
classify the infested leaf. This process aids in segmenting the
leaflet and in calculating disease progression. As depicted in
the figure, first, a Region Proposal Network (RPN) was used
to scan the feature maps to propose candidate bounding boxes
that represent region of interest (RoIs) for further analysis.
The RPN minimizes the objective function as expressed in
[48].

Based on the studies conducted in [18] and [26],
Resnet101 was used as the backbone CNN network for
CCI classification due to its effectiveness compared to other
available models. Resnet101 was combined with a Feature
Pyramid Network (FPN) for feature extraction. As illustrated
in Fig. 2, each stage of the ResNet101 architecture correlates
to a different scale of feature maps. The feature pyramid of
the FPN network is constructed using these feature maps.

The feature maps returned from the ResNet101 backbone
were sent to the RPN to determine regions of interest (RoIs)
where the leaflets exist. Intersection over Union (IoU) values
[49] were used to mark the RoIs. As calculated using (5),
IoU is the ratio between the intersection and union of the
ground truth bounding box and the model’s bounding box.
The ground truth bounding box and predicted bounding box
are represented by A and B, respectively. |AXB| is the area
of overlap or the intersection, while |A Y B| is the area of
union. If the IoU of each predicted region is greater than or
equal to 0.5, RoIs are considered. The rest are defined as the
background (refer to Fig. 2).

IoU “
|A X B|

|A Y B|
(5)

A bounding box rectangles were used to represent each
RoI region acquired on the leaflet image, and Non-maximum
suppression (NMS) [50] was used to choose the bounding
box with the highest foreground value when several bound-
ing boxes overlap (when several bounding boxes represent
one detection).Above process was followed by adjusting the

dimensions of the anchor boxes with RoIAlign to provide a
standard-sized output. Finally, the RoI features are used in the
Fully Connected (FC) layer to conduct target classification of
healthy and infected leaflets and bounding-box regression to
mark the region.

F. CALCULATE CCI PROGRESSION LEVEL
The extent of infestation throughout the leaflet is referred to
as the progression level. A pixel-level instance segmentation
conducted using a Fully Convolutional Network (FCN) was
utilized to mask the infested leaflets (refer to Fig. 2), in
addition to the current classification and bounding box re-
gression methods used to detect CCI. Instance segmentation
was specifically considered here to differentiate each instance
of CCI identification. This technique identifies each object’s
instance by using a mask representation in the image, which
simultaneously performs object class prediction and mask
extraction providing distinct labels for separate occurrences
of objects within the same class.

Consequently, the leaf area of the image was masked, and
only the class label defined as CCI was processed to calculate
the disease progression level. Then, image crop segmentation
was applied using the mask regions to extract the infected
leaflet from the background using the algorithm 1, based on
the method presented in the research paper [51]. The result
is an image where only the infected leaflets are visible, while
the rest of the background is rendered black.

After crop segmentation, color segmentation was utilized
to replace a range of HSV colors corresponding to green
(healthy) and brown (necrotic leaf regions due to feeding
of caterpillars) with single RGB pixel values ((20,255,10) &
(19,69,139) respectively). This approach addresses the issue
of color variations in the image, where multiple shades of
green and brown are present. The remaining (background)

Algorithm 1 Apply Crop Segmentation

1: Input: RGB_Leaf_image, Masks
2: Output: Masked_images
3: Initialize
4: i Ð 0 {Mask index}
5: n_masks Ð number of Masks
6: Masked_images Ð empty array
7: empty_matrix Ð size of RGB_Leaf_image
8: while i ă n_masks do
9: Masked_images.addpempty_matrixq

10: j Ð 0 {RGB channel index}
11: for j ă 3 do
12: j “ j ` 1
13: channel Ð RGB_Leaf_imager:, :, js

14: Masked_imagesrisr:, :, js Ð channel ˚ maskris
15: end for
16: i “ i ` 1
17: end while
18: return Masked_images
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FIGURE 2: The training procedure of Mask R-CNN model for CCI instance segmentation

Algorithm 2 Color Segmentation, K-means Clustering, and
Progression Calculation

1: Input: (img) Crop Segmented Image
2: Output: Progression %
3: k Ð no_of_categories (Number of clusters/categories)
4: hsv_img Ð TO_HSV(img)
5: low_g, up_g Ð Green HSV thresholds
6: low_b, up_b Ð Brown HSV thresholds
7: g_pixels Ð IN_RANGE(hsv_img, low_g, up_g)
8: b_pixels Ð IN_RANGE(hsv_img, low_b, up_b)
9: img[g_pixels] Ð (20, 255, 10)

10: img[b_pixels] Ð (19, 69, 139)
11: img[!(g_pixels OR b_pixels)] Ð (255, 255, 255)
12: kmeans Ð INIT_KMEANS(k)
13: lbls Ð kmeans.labels_
14: counts Ð INIT_COUNT_ARRAY(k)
15: for each lbl in lbls:
16: counts[lbl] Ð counts[lbl] + 1
17: g_color Ð [20, 255, 10]
18: b_color Ð [19, 69, 139]
19: g_count, b_count Ð 0
20: for each idx, count in counts:
21: if centers[idx] “ g_color then g_count Ð count
22: else if centers[idx] “ b_color then b_count Ð count
23: end if
24: end for
25: total_count Ð g_count + b_count
26: green_perc Ð ROUND(g_count / total_count * 100)
27: brown_perc Ð ROUND(b_count / total_count * 100)
28: return (green_perc, brown_perc)

was turned white (255,255,255) to obtain a clear image.
Therefore, after color segmentation, only three clusters of
colors remained in the image: green, brown, and white.
According to experts at CRISL, these are the three categories
that should be present in an infected leaflet. Their rationale
is that the color indicative of CCI can be effectively differen-
tiated from colors associated with other types of infections.
Furthermore, when CCI is present, it tends to dominate the
leaf, suggesting that there are typically no other pests present.
As a result of this insight, the brown pixels represent only the
necrotic leaf regions.

K-means has also been proven effective in similar agri-
cultural studies for color segmentation [52], [53]. Therefore,
K-means clustering was used to assign each pixel a specific
cluster label. Given that our segmentation relied on clear
color distinctions—green representing healthy regions and
brown indicating infected areas (necrotic regions), Addition-
ally, since we had a prior knowledge of the required clusters,
we set the number of clusters (K) to three, corresponding
green, brown, and background areas. Using algorithm 2, we
then counted the pixels labeled as green and brown, enabling
a clear and accurate quantification of healthy and infected
areas. Finally, the progression of the disease was calculated
by determining the ratio of the necrotic region to the entire
leaf region (which includes the total pixel values of both
brown and green). Consequently, in addition to the above
described the algorithm 2 outlines the process of applying
color segmentation, performing K-means clustering, and cal-
culating the progression level.
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G. DETECT AND COUNT COCONUT CATERPILLARS
According to the expert survey during our discussion with
the CRISL officers, they currently count the caterpillars
manually, by collecting them onto a piece of paper. Based on
the number of caterpillars on each coconut leaf, they identify
the severity of the infestation. However, despite employing
this method, we found it to be not only inaccurate at times
but also a tedious task, as the caterpillars are constantly mov-
ing., which makes counting them a difficult task. Moreover,
this process is time-consuming and prone to human error.
Therefore, as one of the objectives of this study, the manual
process was automated using image processing techniques.
Consequently, the YOLO object detection model [42]–[44]
was used, as an improvement of the manual process, to count
the caterpillars in their natural habitat (leaflet itself) without
forcefully extracting them onto paper. Both methodologies
were implemented and evaluated to determine which method
is more efficient and accurate.

1) Counting caterpillars using image processing
Initially, Gaussian Blur was applied after converting the im-
age into greyscale. Next, the image was converted to a binary
image using thresholding after flipping the pixel values using
bitwise conversion to see the available objects. All the dark
regions were turned black while the light regions were turned
white. This was used to prevent a wide range of colors
from being present in the image. After that, erosion (i.e.,
a morphological operation) was used to reduce the features
of the image (shrinking the foreground), as it is capable of
removing minor noises from images. Erosion can eliminate
dust and soil particles that come with the caterpillars. It
was also used to separate and identify caterpillars that were
closely attached.

Finally, the connected components were detected, which
are defined as neighboring pixel regions with the same input
value. Methodically, the algorithm searches for white pixels,
assigning each pixel with a unique label ID and applying the
same label to all neighboring white pixels iteratively until the
entire caterpillar is covered and labeled. Then it moves on to
the next accessible white pixel and repeats the process until
the entire image is analyzed. Through this process, all the
connected components were marked and calculated to detect
the number of caterpillars available in the image.

2) Counting caterpillars using object detection (YOLO)
As stated previously, this study used YOLOv5, YOLOv8,
and YOLO11 object detection models to calculate caterpil-
lars owing their considerably high accuracy rates [54]–[56].
The extra large (x) variants (i.e., YOLOv5x, YOLOv8x, and
YOLO11x) were employed in this study because the x mod-
els achieve significantly higher accuracy compared to other
variants, making them well-suited for tasks requiring precise
detections [44]. For each version, the depth_multiple
and width_multiple parameters were maintained at
their default values as specified in the original implemen-
tations of the respective models [44]. This ensured that the

TABLE 3: Selecting The Best CNN Architecture by Compar-
ing Testing Accuracies for Each Architecture (%)

DL Architectures WCLWD
Classification Symptom Severity

ResNet50 76.92 61.32
DenseNet121 90.00 88.67
ResNet50V2 85.95 87.73
InceptionResNetV2 81.20 97.00
InceptionV3 84.62 77.35
MobileNetV2 78.63 95.28
Xception 84.62 82.07
VGG16 - 90.56

structural integrity of each model remained consistent with
its design. The YOLO models were trained on a custom
dataset of the coconut caterpillar class. The detection tech-
nique was altered to compute the number of caterpillars for
each classification.

Similar to Mask R-CNN, the regions of interest are marked
based on IoU values. Following non-max suppression, which
ensures the object detection algorithm detects each object
only once, it returns detected objects with bounding boxes.

IV. TEST SETUP IMPLEMENTATION, RESULTS AND
DISCUSSION
The tests were conducted on a server with the following con-
figurations: GPUs (NVIDIA Tesla T4 [57], 16 GB GDDR6
memory @ 300 GBps), CPUs (2 × vCPU), and 24 GB of
RAM. The server was implemented in the Google Colab en-
vironment using Python version 3.10.12 and performed under
the deep learning development framework of TensorFlow and
Keras. The training and testing were conducted primarily on
the GPU to leverage its parallel processing capabilities for
deep learning tasks.

A. EVALUATION OF WCLWD IDENTIFICATION AND
CLASSIFICATION
As shown in Table 2, the dataset was initially divided into
training and validation. Then a separate dataset was collected
for the testing purposes. The models for WCLWD, and its
symptom severity were trained using several architectures as
summarized in Table 3, and by considering the accuracy, the
best architecture was chosen. The loss values were consid-
ered to define the model’s performance after each iteration
of optimization. Table 3 shows the testing accuracies for
WCLWD classification and symptom severity.

Accuracy (6), confusion matrix, precision (7), recall (8),
and F1-score (9), as explained in [58], are used to analyze the
performance of both WCLWD classification and symptom
severity models. The Accuracy is defined as the ratio of
correct predictions to the total number of predictions, as
given by (6), where True Positive (TP), False Positive (FP),
True Negative (TN), and False Negative (FN) represent cases
when the model predicts the positive class as positive (i.e.,
TP) or as negative (i.e., FN), and predicts the negative class
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(a) Classification (b) Symptom severity

FIGURE 3: Confusion matrices WCLWD

as positive (i.e., FP) or as negative (i.e., TN), respectively.

Accuracy “
TP ` TN

TP ` TN ` FP ` FN
(6)

The Precision (7) is defined as the ratio of correctly pre-
dicted positive observations to the total predicted positive
observations:

Precision “
TP

TP ` FP
(7)

The Recall (8), also known as sensitivity, is the ratio of cor-
rectly predicted positive observations to all actual positives:

Recall “
TP

TP ` FN
(8)

The F1 score (9) is the harmonic mean of Precision and
Recall, providing a balance between the two metrics:

F1 score “ 2 ˆ
Precision ˆ Recall

Precision ` Recall
(9)

The WCLWD classification model using the DenseNet121
achieved 99.03% training accuracy and 90% testing accuracy
which performs the best test accuracy among several ar-
chitectural models. Moreover, the InceptionResNetV2-based
symptom severity model achieved training and testing accu-
racies of 99.68% and 97%, respectively. Figure 3 illustrates
the confusion matrices related to WCLWD classification (a)
and symptom severity (b), which help to evaluate the perfor-
mance of the trained models. In addition, Fig. 4 represents
the loss and accuracy plots of both models DenseNet121 (a
and b) and InceptionResNetV2 (c and d) respectively.

The precision, recall, and F1-score of the DenseNet121
model used for WCLWD identification and classification
were 71%, 100%, and 83%, respectively. Similarly, the
InceptionResNetV2 model, which was used to determine
symptom severity achieved 99%, 99%, and 98%.

B. EVALUATION OF CCI IDENTIFICATION AND
CLASSIFICATION
As explained previously, the identification, classification and
progression level determination of CCI was achieved using
Mask R-CNN and K-means clustering. The models were

trained in the above-mentioned environment using 60 val-
idation steps, a detection confidence of 0.9, 100 steps per
epoch, and three classes namely, with CCI, without CCI, and
background.

The trained model was able to accurately distinguish be-
tween infested and non-infested leaflets (healthy and other
diseases). Fig. 5 illustrates the outcome of the model. Suspi-
cious leaflets (See Fig. 5. (a)) were sent through the Mask-R
CNN model for detection. After training the model, as shown
in Fig. 5. (b), the results of instance segmentation (mask-
ing) of either infested or non-infested leaflets were created.
Simultaneously, identification, classification and bounding-
box regression were performed to mark the region of leaflets
with labels. A rectangular box was drawn around the object
after classification. Finally, the FCN layer masks the images
according to the coordinates.

After the leaf has been classified and masked, the class
label of the image was checked. If the label identifies the im-
age as infected, crop segmentation was performed to separate
the mask region (leaflet) from the background (c) as shown
in Fig. 5. Only the leaf was extracted while the background
was separated using the mask coordination and dimensions.
This is a clear example where instance segmentation of Mask
RCNN is useful. Following crop segmentation, the HSV
range of green colors was converted into a single RGB value
(20. 255. 10). Similarly, the brown color caused by caterpillar
damage (necrotic regions) was also converted to single RGB
color (19. 69. 139). The rest of the colors were turned to
white before applying k-means clustering algorithm (see Fig.
5. (d)) to label each pixels within same cluster. The reason
for the color conversion is to minimize the number of clusters
needed.

Finally, using the 3 clusters of colors (white, green and
brown), the number of brown pixels with respect to the leaf
area (brown + green) is calculated providing the progression
level of the infestation throughout the leaflet. The analysis is
more reliable because all pixels are analyzed, including small
patches.

For the evaluation of models, performance was assessed by
comparing the annotated images with the prediction results
during the training process by considering the loss values.
After training, metrics such as precision (7), recall (8),
Average Precision (AP) (10) and mean Average Precision
(mAP) (11) value were computed to assess the performance
as explained in [59] and [58]. In object detection, AP is
often computed based on the precision-recall curve, which
aggregates precision values at different recall levels using
(10), Where P priq is the precision at a given recall level ri.

AP “
1

n

n
ÿ

i“1

P priq (10)

The mAP scores across all classes in the dataset were
calculated using (11), Where C is the total number of classes,
and APi is the Average Precision for class i.
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(a) (b)

(c) (d)

FIGURE 4: Loss and accuracy plots: a. Loss curve for WCLWD classification, b. Accuracy curve for WCLWD classification,
c. Loss curve for symptom severity, d. Accuracy curve for symptom severity

(a) (b) (c) (d)

FIGURE 5: Process of calculating the extent of damage: a.
Original image, b. Masking, c. Crop segmentation, d. Color
segmentation

mAP “
1

C

C
ÿ

i“1

APi (11)

The Mask R-CNN model for CCI identification and clas-
sification has performed well in identifying true predictions
by achieving precision and recall values of 92% and 89%
respectively. The respective graphs are shown in Fig. 6.

Finally, with the use of the above metrics mAP is calcu-
lated, and the ResNet101 architecture-based Mask R-CNN
model achieved high detection rates with a mAP value of
95.26%.

C. EVALUATION OF COCONUT CATERPILLAR
DETECTION AND COUNTING
1) Counting caterpillars using object detection (YOLO)
The YOLO algorithms generated output for both categoriza-
tion and localization of caterpillars in leaflets. All the YOLO
models were trained using hyperparameter configurations on
the same computational system to maintain consistency and
ensure fair comparability throughout the process. Key train-
ing parameters included setting the initial and final learning
rates to 0.0001 and 0.01, respectively, ensuring a gradual and
controlled learning process. Momentum was fixed at 0.937
to maintain stable updates across epochs, while a minimal
weight decay of 0.0005 helped prevent overfitting. The batch
size was set at 8, optimizing the balance between memory
usage and processing speed. The models were trained on a
custom coconut caterpillar dataset, the detection technique
was modified to classify two classes (caterpillars and back-
ground) and finally, the detection technique was altered to
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(a) Precision

(b) Recall

(c) mAP

FIGURE 6: Accuracy graphs for Mask R-CNN model: a.
Precision graph, b. Recall graph, c. mAP graph.

compute the number of caterpillars for each classification.
Each model was trained for 100 epochs, providing sufficient
time to learn and adapt to the dataset’s complexities.

Fig. 7 shows a sample image of identified caterpillars as
well as the result of calculating the number of caterpillars in
the image. The comparison among the YOLO modes is given
in Figs. 8, 9, and 10 for YOLOv5, YOLOv8 and YOLO11
respectively. The summary of the results for each model is
shown in Table 4. As shown in the table, it can be observed
that the YOLOv5 clearly outperforms the other two models.

2) Counting caterpillars using image processing
The automated caterpillar counting process, which simulates
the existing manual method of placing caterpillars on paper

Model Precision (%) Recall (%) mAP (%)
YOLOv5 93 92.5 96.87
YOLOv8 90.3 92.3 96.1
YOLO11 91 92.2 95.9

TABLE 4: Performance metrics for YOLOv5, YOLOv8, and
YOLO11.

for counting, is illustrated in Fig. 11. As illustrated in Fig.
11. (a) the captured image was turned into greyscale while
using Gaussian Blur to remove background noises to a certain
extent. Then thresholding was applied, as shown in Fig. 11.
(b), and that helped to clearly distinguish all caterpillars and
small dust particles (if available) with the background. To
remove the remaining noises (dust particles) erosion was
used and the resultant image was given in Fig. 11. (c). This
technique was also effective in separating caterpillars that are
close or attached. Finally, all the caterpillars are detected by
finding the connected components (See Fig. 11. (d)).

Although this process was fairly accurate, the counting
results can be incorrect when the image lighting conditions
vary, as this method relies on consistent image processing
factors to provide accurate results. Additionally, if the image
perception differs, small caterpillars can be removed by the
erode function. This research demonstrated that the auto-
mated manual process is less accurate compared to the state-
of-the-art object detection model mentioned in IV-C1.

V. DISCUSSION
When comparing the existing studies on coconut disease
classification, such as [29], [30], and [31], they mainly fo-
cused on identifying diseases in later stages, when symptoms
have progressed visibly. However, it is a fact that identifying
diseases in the early stages will give farmers a comparative
advantage to apply remedial solutions. Consequently, the
proposed method can detect WCLWD with an accuracy of
90% in the early stages by correctly identifying flaccidity.
Flaccidity, which is subtle and often indistinguishable even
for experts, marks the initial stages of WCLWD. Hence, the
early detection capability of this study addresses a critical
gap in current practices and provides significant potential for
timely intervention.

Moreover, the proposed method extends beyond disease
classification to include severity assessment, an area that has
received limited attention in the prior literature. By utilizing
inceptionResNetV2 for severity assessment, we achieved an
accuracy of 97%. This dual approach not only enhances the
precision of detection but also provides actionable insights
into disease progression, enabling more informed decision-
making in disease management.

Similarly, traditional and manual methods of counting
coconut caterpillars are labor-intensive and prone to incon-
sistencies, especially under variable conditions such as light
conditions and movements of caterpillars. Although, image-
processing techniques offer some automation, their accuracy
is heavily dependent on the parameters (i.e., lighting condi-
tions, image perception, noise, etc.). Also, limitations such as
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(a) (b) (c) (d)

FIGURE 7: Counting the number of caterpillars using YOLO models: (a) Original image with 6 caterpillars, (b) YOLOv5x
detection (6/6 correctly identified), (c) YOLOv8x detection (5/6 correctly identified), (d) YOLOv11x detection (5/6 correctly
identified.

(a) Precision (b) Recall (c) mAP

FIGURE 8: Graphs for YOLOv5 model: a. Precision graph,
b. Recall graph, c. mAP graph

(a) Precision (b) Recall (c) mAP

FIGURE 9: Graphs for YOLOv8 model: a. Precision graph,
b. Recall graph, c. mAP graph

removal of smaller caterpillars during preprocessing is highly
affecting the accuracy of the caterpillar counts.

(a) Precision (b) Recall (c) mAP

FIGURE 10: Graphs for YOLO11 model: a. Precision graph,
b. Recall graph, c. mAP graph

(a) (b) (c) (d)

FIGURE 11: Results of calculating caterpillars using image
processing: (a) Original image, (b) Thresholding, (c) Erosion,
(d) Connected components

Our adoption of YOLO-based object detection models sig-
nificantly improved both accuracy and efficiency of the CCI
detection. An analysis was conducted, using 100 images, to
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FIGURE 12: Comparison between Image Processing Tech-
nique and YOLO (YOLOv5, YOLOv8 & YOLO11) Object
Detection Model on 100 images against ground truth results.

compare the accuracies of both YOLO models and the image
processing technique against a human counting performed by
scientists in CRISL (this was considered as the ground truth).
The results obtained are given in Fig. 12. As illustrated in the
figure, the YOLOv5 model correctly identified the number
of caterpillars in 97 of 100 images, leaving 3 images with
incorrect values. The YOLOv8 model correctly identified the
number of caterpillars in 95 of 100 images, leaving 5 images
with discrepancies, while the YOLO11 model accurately
identified caterpillars in 90 of 100 images, leaving 10 images
with incorrect values.

Subsequently, among the tested YOLO models, YOLOv5
emerged as the most effective model by achieving a mAP
of 96.87%. Hence, as given in Table 4 and Fig. 12, it can
be observed that YOLOv5 outperforms both YOLOv8 and
YOLO11 in accuracy, precision and recall; YOLOv5 model
performance surpasses even the more recent YOLO11 model,
underscoring the importance of context-specific model eval-
uation despite we used the default depth_multiple and
width_multiple parameters for all the tested YOLO
versions.

Notably, the image processing technique was capable of
accurately identifying only 79 of 100 images. This shows that
automated caterpillar detection with YOLO models not only
addresses the inefficiencies of manual counting but also en-
sures reliable results under diverse environmental conditions.

The variety of image resolutions in our dataset played a
major role in the success of our models. By using images
of different qualities and from different places of the country,
we ensured that the models could handle real-world scenarios
effectively. This approach allowed our models to perform
well even when tested on lower-quality images, highlighting
the importance of diverse data during training and testing.

VI. CONCLUSION
This research study was carried out in Matara, Puttalam, and
Makandura in Sri Lanka to find the effectiveness of using
Deep Learning techniques such as classification, instance
segmentation, and object detection along with image pro-
cessing techniques for early identification of WCLWD and

CCI. The disease classification and the disease severity were
determined using CNN, Mask R-CNN, and YOLO models
and were able to yield accuracy ranging from 90% to 97%.
Furthermore, the manual and tedious caterpillar identification
process was automated to minimize human inaccuracies and
comparative results show that the automated method imple-
mented using YOLOv5 identified caterpillars with only a 3%
error rate.

In the future, we will work closely with the Coconut
Research Institute of Sri Lanka to enhance the early identi-
fication of other coconut diseases and pest infestations. We
will also explore the use of different architectures for disease
detection and severity assessment, to evaluate and compare
the performance of models for both WCLWD and CCI. To
address real-world applicability, the study will be extended
to handle more complex field conditions, such as overlap-
ping leaves, varying orientations (front and back surfaces).
Additionally, as a key aspect of future work, Explainable
Artificial Intelligence (XAI) techniques will also be incor-
porated to provide insights into the decision-making process
of the models, improving their interpretability. Data from
other regions of the country will also be utilized to refine and
enhance model accuracy. Finally, the testing will be expanded
to other coconut-growing regions, including Kerala, India, to
provide sustainable solutions globally. We aim to encourage
international researchers to freely use and contribute to the
dataset published in [33], further automating this critical
industry.
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